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Abstract. We study geodesic flows on Lie groups with the left-invariant non-holonomic
constraint. In the case of the existence of an invariant measure, we find new integrable non-
Hamiltonian systems onSO(4) and other six-dimensional Lie groups.

0. Introduction

Hertz has classified mechanical systems withn degrees of freedom andk < n linear
constraints into the holonomic and non-holonomic according to whether constraints are
integrable or not. He noticed that non-holonomic equations (derived from the d’Alambert–
Lagrange principle) are not Hamiltonian [1]. It is well known that a Hamiltonian system is
integrable if it hasn integrals in involution. By the classical Liouville theorem, under the
compactness assumption, the motion in the 2n-dimensional phase space could be seen as
the winding onn-dimensional invariant tori [2]

ϕi = ωit + ϕ0i mod(2π) ωi = constant,i = 1, . . . , n.

In general, we need 2n−k−1 integrals of motion for integrating the non-holonomic system.
In some solvable problems the behaviour of the system is close to the Hamiltonian integrable
system, we need ‘only’ 2n − k − 2 integrals, and trajectories in the phase space belong
to invariant two-dimensional tori. This is a consequent of the existence of an invariant
measure: by using an integrating factor it is possible to find locally one more integral of
motion [3, 4]. Moreover, if the invariant manifold is compact, connected, and equations
have no singularity upon it, then the invariant manifold is diffeomorphic to a 2-torus. By
Kolmogorov’s theorem [5] on the reduction of differential equations with smooth invariant
measure on the torus, there exist angular coordinatesϕ1, ϕ2 mod(2π) in which motion takes
the form

ϕ̇1 = ω1

8(ϕ1, ϕ2)
ϕ̇2 = ω2

8(ϕ1, ϕ2)

whereω1, ω2 are constants and8 is a smooth positive function. The reduction of non-
holonomic systems with symmetry, as well methods of integration of systems with an
invariant measure, can be found in [1, 3, 4, 6, 7].

Veselov and Veselova considered non-holonomic geodesic flows on Lie groups with left-
invariant metrics [6]. They specified a right-invariant constraint. Similar generalizations
have been applied to systems with left-invariant constraints (Euler–Poincaré–Suslov
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1416 B Jovanovi´c

equations) by Kozlov [8] (also see [9]). Following [6, 8], in this paper, we shall make
a careful study of the Euler–Poincaré–Suslov equations for six-dimensional Lie groups.

In section 1 we shall set the notation and definitions. An example of the construction
of angular coordinates for the basic integrable case is given in section 2. In section 3 we
shall prove the main result of the paper: the integrability of non-holonomic geodesic flows
with an invariant measure on two classes of Lie groups.

1. Euler–Poincaŕe equations with constraint

Let Q be then-dimensional manifold,L(ẋ, x) a Lagrangian function and letD ⊂ TQ

be the non-integrable distribution of a tangent bundle. The smooth pathx(t), t ∈ 1, is
admissible (allowed by the constraint) ifẋ ∈ Dx, t ∈ 1. The admissible path is a motion
of the non-holonomic Lagrangian system (Q,L,D) if it satisfies the d’Alambert–Lagrange
principle [1] (

∂L

∂x
− d

dt

∂L

∂ẋ
, ξ

)
= 0 for all ξ ∈ Dx.

Now, let Q be a real Lie groupG, G = TeG its Lie algebra, andG∗ = T ∗e G the dual
vector space ofG. Let 〈. , .〉 be the left-invariant metric onG given with the symmetric
operatorI : G → G∗ and letA = I−1 : G∗ → G. If g(t), t ∈ 1 is a smooth path, as
usual [2], we introduceω(t) = (Lg−1)∗ġ ∈ G, M(t) = Iω(t) ∈ G∗. Then the metric is
〈ġ, ġ〉 = (Iω, ω) = (M,AM).

We shall consider the non-holonomic geodesic flow onG with the constraint defined
by the left-invariant 1-formα(N = (Lg)∗α = constant):

(α, ġ) = (α, (Lg)∗ω) = ((Lg)∗α, ω) = (N, ω) = (N,AM) = 0 (1)

i.e. inertial motion of a mechanical system with the configuration spaceG, kinetic energy
1
2〈ġ, ġ〉 and the constraint (1). Equations of the motion, derived from the d’Alambert–
Lagrange principle, are reduced toG∗ (or precisely, they are reduced to (N,AM) = 0⊂ G∗):

Ṁ = ad∗dHM + λN (N,ω) = (N,AM) = 0 (2)

where the Hamiltonian ifH = 1
2(M,AM) and ad∗ξ : G∗ → G∗, ξ ∈ G is the co-adjoint

action of the Lie algebraG on G∗: (ad∗ξM, η) = (M, [ξ, η]) for all η ∈ G, M ∈ G∗ [2, 7].
From the constraint we can find the Lagrange multiplier

λ = −(N,A(ad∗AMM))/(N,AN) = (M, [AN,AM])/(N,AN). (3)

Let e1, . . . , en be the base of the Lie algebraG with structural constants [ei, ej ] =
∑

k C
k
ij ek,

and lete1, . . . , en be the dual base ofG∗. Also, let ωj , Mi be coordinates ofω andM
according to those bases, and letAij = (ei, Aej ). With such a notation, coordinately
equations (2) take the form

Ṁk = {Mk,H } + λNk =
∑
i,j,l

ClikMlA
ijMj + λNk

∑
i,j

NiA
ijMj = 0 (4)

where Lie–Poisson brackets onG∗ are

{F,G} =
∑
i,j,l

−ClijMl∂iF∂jG F,G ∈ C∞(G∗).

For the caseG = SO(3), (4) becomes

Ṁ = M × AM + λN (N,ω) = (N,AM) = 0 (5)
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where× is a usual vector product inR3. Equations (5) describe rotation of a rigid body fixed
at a point and subject to the non-integrable constraint(N, ω) = 0. N is the constant vector,
ω is the angular velocity,M the angular momentum in body coordinates andI = A−1 is
the inertia operator of a rigid body. This problem was first studied and solved by Suslov
[10]. Thus, equations (2) are calledEuler–Poincaré–Suslov(EPS) equations.

Generalizations of the Suslov problem, supposing that the body rotates in an axially-
symmetric potential force field, can be found in [3, 4, 11].

2. Conditions for the existence of an integral invariant—example

Kozlov gave necessary and sufficient conditions for the existence of an invariant measure
of EPS equations in the case of compact groups [8]. We shall need similar results for
non-compact groups as well. It can be proved that equations (2) have an invariant measure
if and only if

Kad∗ANN + T = µN µ ∈ R (6)

whereK = 1/(N,AN), T ∈ G∗, (T , ξ) = Tr(adξ ), ξ ∈ G, or in coordinate notation

K
∑
i,g,k

CkijA
igNgNk +

∑
k

Ckjk = µNj µ ∈ R.

If we haven−3 integrals, then the EPS equations, with an integral invariant, are integrable.
The Hamiltonian function is always the first integral. Thus, we need two additional integrals
(independent of the constraint and Hamiltonian) for six-dimensional groups.

The following lemma is a modification of the well known involutive condition on a
function to be the integral in Hamiltonian systems.

Lemma 1. If F satisfies{F,H } + λ dF(N)|(N,AM)=0 = 0 (λ is given with (3)) thenF
is the integral of equations (2). In particular, all invariantI on G∗ with the condition
dI (N)|(N,AM)=0 = 0 are integrals of (2).

To illustrate the behaviour of integrable systems we start with the following example
on SO(4).

Example 1. We can choose the basee±i , i = 1, 2, 3, in whichω ∈ SO(4) has the following
representation

ω =
3∑
i=1

(ωie+i + ωi+3e−i ) =


0 −ω3 ω2 −ω4

ω3 0 −ω1 −ω5

−ω2 ω1 0 −ω6

ω4 ω5 ω6 0

 .
Then [e+i , e

+
j ] = εijke

+
k , [e−i , e

−
j ] = εijke

+
k , [e+i , e

−
j ] = εijke

−
k , and invariants onso(4)∗

becomeI1 =
∑6

k=1M
2
k , I2 =

∑3
k=1MkMk+3. For diagonal metrics, the Hamiltonian is

H = 1
2

∑6
i=1A

iM2
i and if we defineAij = Ai − Aj , equations (4) take the form

Ṁ1 = M2M3A32+M5M6A65+ λN1 Ṁ4 = M5M3A35+M2M6A62+ λN4

Ṁ2 = M3M1A13+M6M4A46+ λN2 Ṁ5 = M3M4A43+M6M1A16+ λN5 (7)

Ṁ3 = M1M2A21+M4M5A54+ λN3 Ṁ6 = M4M2A24+M1M5A51+ λN6

6∑
k=1

AkNkMk = 0.
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The basic integrable non-holonomic example isN being the eigenvector of the operatorA.
Without loss of generality, supposeN = e3

−. Then equations (7) preserve the measure on
(N, ω) = ω6 = A6M6 = 0 ⊂ so(4)∗ and they have three independent first integrals: the
invariantI1, and two new ones

F2 = A13M
2
1 − A32M

2
2 F3 = A43M

2
4 − A35M

2
5 . (8)

The Hamiltonian is a linear combination ofI1, F2 andF3. We define new variablesu and
v by

u = A13M
2
1 + A32M

2
2 v = A43M

2
4 + A35M

2
5 . (9)

For the sake of simplicity, we supposeA13, A23, A43, A53 > 0. On the invariant manifold

Mc = {M ∈ so(4)∗|I1 = c1, F2 = c2, F3 = c3}
equations (7) do not have a singularity (for example, ifc1 is big enough). Thus,Mc is
diffeomorphic to the 2-torus. In variablesu∗, v equations (7) onMc are

u̇ = ±
√
A13A23

√
c2

2 − u2M3(u, v) − c2 6 u 6 c2

v̇ = ±
√
A43A53

√
c2

3 − v2M3(u, v) − c3 6 v 6 c3 (10)

M2
3 = c1−

(
u+ c2

2A13
+ u− c2

2A32
+ v + c3

2A43
+ v − c3

2A35

)
6= 0.

We shall introduce angular variablesϕ1, ϕ2 mod(2π) with formulae

ϕ1 =
∫ u

−c2

dz

±
√
c2

2 − z2
ϕ2 =

∫ v

−c3

dz

±
√
c2

3 − z2
. (11)

The sign (positive or negative) in the integrals depends on whetheru(v) increases or
decreases. In angular coordinatesϕ1 ϕ2 the motion on the torusMc gets the form

ϕ̇1 = ω1

8(ϕ1, ϕ2)
ϕ̇2 = ω2

8(ϕ1, ϕ2)
(12)

where ω1 = 2
√
A13A23, ω2 = 2

√
A43A53, 8(ϕ1, ϕ2) = M−1

3 (ϕ1, ϕ2), according to
Kolmogorov’s theorem. It is interesting that if trajectories are closed on one torusMc,
then they are closed on all tori, and this happens when

√
A13A23/A43A53 is a rational

number.

3. Integrable non-Hamiltonian systems onSO(4) and other six-dimensional Lie
groups

Now, we adapt this approach to derive the integrability for a more general situation. We are
going to consider two classesA andB of six-dimensional Lie algebrasG, in which there
are basese±i andf ±i , i = 1, 2, 3, with commutators [12]

classA
[e+i , d

+
j ] = nkεijke+k [e−i , e

−
j ] = qnkεijke+k [e+i , e

−
j ] = nkεijke−k (13)

classB
[f +i , f

+
j ] = nkεijkf +k [f −i , f

−
j ] = mkεijkf −k [f +i , f

−
j ] = 0 (14)

wherenk, mk andq are (structural) constants.
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In classA there are Lie algebrasso(4) (nk = 1, q = 1), so(3.1) (n1 = n2 = 1,
n3 = −1, q = −1), so(2.2) (n1 = n2 = 1, n3 = −1, q = 1), e(3) (nk = 1, q = 0),
l(3) (n1 = n2 = 1, n3 = −1, q = 0) etc. E(3) and L(3) are groups of motions
of the three-dimensional Euclidean and the pseudo-Euclidean spaces. In classB there
are Lie algebrasso(4) = so(3) ⊕ so(3) (nk = 1, mk = 1), sl(2, R) ⊕ sl(2, R)
(n1 = n2 = m1 = m2 = 1, n3 = m3 = −1) etc. Basese±i and f ±i , for the group
SO(4) are related byf ±i = 1

2(e
+
i ± e−i ).

Let ei± andf i+ be dual bases inG∗, and letM±i , i = 1, 2, 3, be coordinates ofM ∈ G∗
according to those bases. Then invariants onG∗ are

classA

I1 =
3∑
k=1

(qnk(M
+
k )

2+ nk(M−k )2) I2 =
3∑
k=1

nkM
+
k M

−
k (15)

classB

I1 =
3∑
k=1

nk(M
+
k )

2 I2 =
3∑
k=1

mk(M
−
k )

2. (16)

The general metric is given with the Hamiltonian

H = 1
2(B+M

+,M+)+ (CM+,M−)+ 1
2(B−M

−,M−) (17)

whereB+ andB− are symmetric andC arbitrary. For

ω+ = ∂H

∂M+
= B+M+ + CM− ω− = ∂H

∂M−
= B−M− + CM+ (18)

we can write equations (4) as follows [12],
classA

Ṁ+ = M̄+ × ω+ + M̄− × ω− + λN+
Ṁ− = M̄− × ω+ + qM̄+ × ω− + λN−
M̄+k = nkM+k M̄−k = nkM−k k = 1, 2, 3 (19)

classB
Ṁ+ = M̄+ × ω+ + λN+
Ṁ− = M̄− × ω− + λN−
M̄+k = nkM+k M̄−k = mkM−k k = 1, 2, 3 (20)

where× is a usual vector product inR3, and the Lagrange multiplier is determined from
the constraint(N+, ω+) + (N−, ω−) = 0. Equations (7) correspond to the case in which
B+ andB− are diagonal, andC = 0.

If B+, B−, andC are diagonal, andN+ = σ+ek+, N− = σ−ek−, σ± ∈ R, σ 2
+ + σ 2

− > 0
in the case ofG ∈ A (or N+ = σ+f k+, N− = σ−f k− in the case ofG ∈ B), we can get from
(6) that the EPS equations have an integral invariant. Then the non-holonomic constraint is

(N+, ω+)+ (N−, ω−) = M+k (σ+Bk+ + σ−Ck)+M−k (σ+Ck + σ−Bk−) = 0. (21)

The measure could be preserved for other constraints as well, but under supplementary
conditions forB± andC. We shall restrict ourselves to the case in which the constraint is
given by (21).

Proposition 1. The Euler–Poincaré–Suslov equations onG∗, whereG ∈ A or G ∈ B with
Hamiltonian (17) whereB+, B−, C are diagonal, and the non-holonomic constraint (21) are
integrable.
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Proof. Without loss of generality, supposeN± = σ±e1
±(N

± = σ±f 1
±). First, letG ∈ A.

Then

dI1(N) = 2qn1σ+M+1 + 2n1σ−M−1 dI2(N) = n1σ−M+1 + n1σ+M−1 . (22)

If σ− = q = 0, then by lemma 1,I1 is the first integral of (19). Otherwise, from (21), (22),
and lemma 1, it is

I = (2qσ 2
+ − 2σ 2

−)(σ+B
1
+ + σ−C1)(2σ−I2− σ+I1)

+(2σ 2
− − 2qσ 2

+)(σ+C
1+ σ−B1

−)(2qσ+I2− σ−I1). (23)

Similarly, for G ∈ B, it can be proved that the invariant

I = m1(σ−σ+B1
+ + σ 2

−C
1)I1+ n1(σ+σ−B1

− + σ 2
+C

1)I2 (24)

satisfies dI (N) = 0 on the constraint (21), and it is the integral of equation (20). Thus, the
task of integrating equations (19) and (20) is reduced to that of finding the third integral,
independent of constrain (21), Hamiltonian (17), and the invariants (23) and (24). We are
interested in the integral of the polynomial form

F3 = x+(M+2 )2+ y+(M+3 )2+ 2fM+2 M
−
2 + 2gM+3 M

−
3 + x−(M−2 )2+ y−(M−3 )2. (25)

By using the constraint we can expressM+1 as a function ofM−1 . Then the equations for
M±2 andM±3 take the form

Ṁ+2 = M+3 M−1 L+1 +M−3 M−1 E+1
Ṁ+3 = M+2 M−1 L+2 +M−2 M−1 E+2
Ṁ−2 = M−3 M−1 L−1 +M+3 M−1 E−1
Ṁ−3 = M−2 M−1 L−2 +M+2 M−1 E−2 .

(26)

CoefficientsL±1 , L±2 , E±1 , andE±2 are determined from (19) and (20). Now, we find that
the conditionḞ3 = 0 is equivalent to the following system of linear equations forx±, y±,
f , andg:

x+L+1 + y+L+2 + fE−1 + gE−2 = 0

x+E+1 + y−E−2 + fL−1 + gL+2 = 0

x−L−1 + y−L−2 + fE+1 + gE+2 = 0

x−E−1 + y+E+2 + fL+1 + gL−2 = 0.

(27)

The system (27) always has a solution, and for general values off andg the integralF3 is
independent of (21) and other integrals (17), (23), and (24). �

By the use of the physical meaning of the EPS equations, we find that special cases of
our result are integrable perturbations of the classical Suslov problem (5).

Example 2. Equations (19) one(3)∗ for C = 0, N− = 0, M+ = M, M− = γ , ω+ = ω,
B+ = A, andB− = B become

Ṁ = M × AM + γ × ∂V
∂γ
+ λN γ̇ = γ × ω (N,AM) = 0

whereV = 1
2(Bγ, γ ). This is the Suslov problem (5), with the additional axially-symmetric

potential fieldV (γ ) (γ is a constant vector in a fixed reference frame). From proposition 1
we obtain the well known result: ifN is an eigenvector of the operatorA, then the Suslov
problem with a quadratic potential is integrable [3, 4].
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Example 3. Equations (20) onso(4)∗ describe the rotation of a rigid body with the elliptical
hole, filled with ideal incompressible fluid. This problem, without constraint, was studied
by Zhukovski, Poincaŕe and Steklov at the beginning of the century (see references in
[12]). The total angular momentum and the vortex vector of the fluid areM+ andM−,
respectively. ForN− = 0, the rigid body is subject to the same constraint as in the Suslov
problem: (N+, ω+) = 0, whereN+ is a constant vector, andω+ is the angular velocity of
the rigid body. For the Hamiltonian we take

H = 1
2(G

−1M+,M+)+ (2d(CDG)−1M+,M−)

+ 1
2((

1
5mC

−1+ 4d2C−2D−2G−1)M−,M−)

where I = diag(I1, I2, I3) is the inertia operator,D = diag(D1,D2,D3) is the operator
which maps the unit sphere to the ellopsoid,d = detD, m is the mass of the fluid,
C = Tr(D2)E − D2, and E is the unit matrix, andG = I + 1

5mC
−1(C2 − 4d2D−2)

[12].

4. Comments

Geodesic flows onSO(4) are very well studied. Necessary conditions on metrics, for the
integrability of equations (19) and (20), without non-holonomic constraints, could be found
in [12–14] and [12, 15], respectively.

In the paper [9] there is a detailed analysis of the EPS equations forSO(n) with
1
2(n− 1)(n− 2) constraints.

One of the main consequences of the symmetry of geodesic flows onG with left-
invariant constraints is the reduction to the EPS equations onG∗. This is part of the general
reduction for the non-holonomic Lagrangian systems (Q, L, D) studied recently [17]. There
it has been proved that ifQ is a principal bundle,Q → Q/G, with the Lagrangian and
the distributionD invariant under the action of the groupG, then the equations of motion
could be considered on the reduced spaceD/G. Also, the equations written in the case of
the ‘principal’ assumption (span{Dx, TxOrbG(x)} = TxQ for all x ∈ Q), whereQ = G, the
Lagrangian is just the kinetic energy, and ker(αg) ⊂ TgG is the distributionD, coincide
with the EPS equations.
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